Anomaly Identification from Super-low Frequency Electromagnetic Data for the Coalbed Methane Detection

نویسندگان

  • S. S. Zhao
  • N. Wang
  • X. Ye
  • Q. Qin
چکیده

Natural source Super Low Frequency(SLF) electromagnetic prospecting methods have become an increasingly promising way in the resource detection. The capacity estimation of the reservoirs is of great importance to evaluate their exploitation potency. In this paper, we built a signal-estimate model for SLF electromagnetic signal and processed the monitored data with adaptive filter. The non-normal distribution test showed that the distribution of the signal was obviously different from Gaussian probability distribution, and Class B instantaneous amplitude probability model can well describe the statistical properties of SLF electromagnetic data. The Class B model parameter estimation is very complicated because its kernel function is confluent hypergeometric function. The parameters of the model were estimated based on property spectral function using Least Square Gradient Method(LSGM). The simulation of this estimation method was carried out, and the results of simulation demonstrated that the LGSM estimation method can reflect important information of the Class B signal model, of which the Gaussian component was considered to be the systematic noise and random noise, and the Intermediate Event Component was considered to be the background ground and human activity noise. Then the observation data was processed using adaptive noise cancellation filter. With the noise components subtracted out adaptively, the remaining part is the signal of interest, i.e., the anomaly information. It was considered to be relevant to the reservoir position of the coalbed methane stratum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of coalbed methane potential in Parvadeh IV coal deposit in central Iran using a combination of MARS modeling and Kriging

Coalbed methane (CBM) plays an important role in coal mining safety and natural gas production. In this work, The CBM potential of B2 seam in Parvadeh IV coal deposit, in central Iran, was evaluated using a combination of local regression and geostatistical methods. As there were 30 sparse methane sampling points in the Parvadeh IV coal deposit, no valid variogram was achieved for the methane c...

متن کامل

Detection of Mo geochemical anomaly in depth using a new scenario based on spectrum–area fractal analysis

Detection of deep and hidden mineralization using the surface geochemical data is a challenging subject in the mineral exploration. In this work, a novel scenario based on the spectrum–area fractal analysis (SAFA) and the principal component analysis (PCA) has been applied to distinguish and delineate the blind and deep Mo anomaly in the Dalli Cu–Au porphyry mineralization area. The Dalli miner...

متن کامل

Metagenome-Assembled Genome Sequence of Pseudomonas stutzeri Strain CO183 Isolated from a Coalbed Methane Well

A near-complete Pseudomonas stutzeri draft genome was extracted from a coalbed metagenome. The draft genome described herein provides insight into the functional pathways encoded by this bacterium and its potential role in coalbed methane environments.

متن کامل

Mosquito larval habitat mapping using remote sensing and GIS: implications of coalbed methane development and West Nile virus.

Potential larval habitats of the mosquito Culex tarsalis (Coquillett), implicated as a primary vector of West Nile virus in Wyoming, were identified using integrated remote sensing and geographic information system (GIS) analyses. The study area is in the Powder River Basin of north central Wyoming, an area that has been undergoing a significant increase in coalbed methane gas extractions since...

متن کامل

A Hybrid Framework for Building an Efficient Incremental Intrusion Detection System

In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016